1 Bayes Theorem and Independence

1.1 Concepts

1. We use Bayes theorem when we want to find the probability of A given B but we are told the opposite probability, the probability of B given A. There are several forms of Bayes Theorem as follows:

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P(B \mid \bar{A}) P(\bar{A})}=\frac{1}{1+\frac{P(B \mid \bar{A}) P(\bar{A})}{P(B \mid A) P(A)}} .
$$

In order to discern which form to use, look at the information you are given. If you are told $P(B \mid A)$ as well as $P(B \mid \bar{A})$, use the latter two methods but if you are only told $P(B)$, then use the first form.
We say that two events A, B are independent if $P(A \cap B)=P(A) P(B)$.

1.2 Examples

2. When rolling a fair 6 -sided die, are the events A that the number rolled is greater than or equal to 3 , and B that the number rolled is odd, independent?

Solution: We just need to check $P(A \cap B)=P(A) P(B)$. On the left side, the probability is $\frac{2}{6}$ from having 3,5 , and $P(A)=\frac{2}{3}$ and $P(B)=\frac{1}{2}$ so indeed $P(A \cap B)=$ $P(A) P(B)$. So they are independent.
3. There are 10 red and 10 blue balls in a bag. Someone randomly picks out a ball and then places it back and puts 10 more balls of that color into the bag. Then you draw a ball. What is the probability that the 10 balls added were red, given that you drew out a red ball?

Solution: We use Bayes Theorem to get

$$
\begin{gathered}
P(\text { AddRed } \mid \text { DrawRed })=\frac{1}{1+\frac{P(\text { DrawRed } \mid \text { AddBlue }) P(\text { AddBlue })}{P(\text { DrawRed } \mid \text { AddRed }) P(\text { AddRed })}} \\
=\frac{1}{1+\frac{10 / 30 \cdot 1 / 2}{20 / 30 \cdot 1 / 2}}=\frac{1}{1+1 / 2}=\frac{2}{3}
\end{gathered}
$$

1.3 Problems

4. TRUE False If A, B are mutual exclusive events that are independent, then $P(A)=0$ or $P(B)=0$.

Solution: If A, B are mutually exclusive, then $A \cap B=\emptyset$. Then if they are independent, then $P(A \cap B)=0=P(A) P(B)$ so $P(A)=0$ or $P(B)=0$.
5. True FALSE If A, B are independent events and B, C are independent, then A, C are independent.

Solution: We can take A and C to be the same event.
6. I roll two die. Are the events that the first die roll is a 1 and that the sum of the two dice is a 7 independent?

Solution: Let A be the event that the first die roll is a 1 and let B be the event that the sum of the two dice is a 7 . Then we can compute $P(A)=P(B)=1 / 6$ and $P(A \cap B)=1 / 36$, so they are independent.
7. What is the probability that a family with two kids has two boys if you know at least one is a boy?

Solution: This is a tricky problem. Let A be the event that you have at least one boy and let B be the event that you have two boys. Then by Bayes, we have that

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}=\frac{1 \cdot 1 / 4}{3 / 4}=\frac{1}{3}
$$

